SIFT Detectors for Matching Aerial Images in Reduced Space

نویسندگان

  • Houari Kamel
  • Youssef Chahir
  • Mohamed-Khireddine KHOLLADI
چکیده

In this paper we propose a novel approach for matching cartographic images over detecting interest points invariant to scale and affine transformations. Our scale and affine invariant detectors are based on the following recent results: Interest points extracted with the SIFT detector which is adapted to affine transformations and give repeatable results (geometrically stable). This provides a set of distinctive points which are invariant to scale, rotation and translation as well as robust to illumination changes and limited changes of viewpoint. The characteristic scale determines a scale invariant region for each point. The characteristic scale and the affine shape of neighbourhood determine an affine invariant region for each point. We apply an unsupervised classification to reduce the space of sets of interest points by using weighted bipartite graph matching in solving the point correspondence. Diffusion map: projection of the bipartite graph in a reduce space on which we apply K-means to classify the representatives clusters. The performance of our approach detector is also confirmed by excellent matching results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications

In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in pho...

متن کامل

Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching

Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...

متن کامل

Feature Based Image Matching for Airborne Platform

In computer vision, detection and tracking of targets is very complex problem and demands sophisticated solutions. Unmanned Aerial Vehicles (UAVs) are increasingly being used for reconnaissance and Surveillance. This framework mainly consists of image matching for reconnaissance and Surveillance. This framework mainly consists of image matching for Digital Scene Matching Area Correlation (DSMAC...

متن کامل

On the matching precision of SIFT

Matching precision of scale-invariant feature transform (SIFT) is evaluated and improved in this paper. The aim of the paper is not to invent a new feature detector more invariant than the others. Instead, we focus on SIFT method and evaluate and improve the matching precision, defined as the root mean square error (RMSE) under ground truth geometric transform. Matching precision reflects to so...

متن کامل

An Improved SIFT Algorithm for Unmanned Aerial Vehicle Imagery

The Unmanned Aerial Vehicle (UAV) platform has the benefits of low cost and convenience compared with satellites. Recently, UAVs have shown a wide range of applications such as land use change, mineral resources management and local topographic mapping. Because of the instability of the UAV air gesture, an image matching method is necessary to match different images of an object or scene. Scale...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007